# Category Archives: Higher Inductive Types

## Homotopy Theory in Type Theory: Progress Report

A little while ago, we gave an overview of the kinds of results in homotopy theory that we might try to prove in homotopy type theory (such as calculating homotopy groups of spheres), and the basic tools used in our synthetic approach … Continue reading

Posted in Higher Inductive Types, Homotopy Theory | 1 Comment

## Covering Spaces

Covering spaces are one of the important topics in classical homotopy theory, and this post summarizes what we have done in HoTT.  We have formulated the covering spaces and (re)proved the classification theorem based on (right) -sets, i.e., sets equipped with … Continue reading

Posted in Code, Higher Inductive Types, Homotopy Theory | 5 Comments

## Homotopy Theory in Homotopy Type Theory: Introduction

Many of us working on homotopy type theory believe that it will be a better framework for doing math, and in particular computer-checked math, than set theory or classical higher-order logic or non-univalent type theory. One reason we believe this … Continue reading

## Running Spheres in Agda, Part II

(Sorry for the long delay after the Part I of this post.) This post will summarize my work on defining spheres in arbitrary finite dimensions (Sⁿ) in Agda. I am going to use the tools for higher-order paths (discussed in … Continue reading

## All Modalities are HITs

Last Friday at IAS, Guillaume Brunerie presented a very nice proof that for all . I hope he will write it up and blog about it himself; I want to talk instead about a question regarding modalities that was raised … Continue reading

Posted in Higher Inductive Types | 5 Comments

## Truncations and truncated higher inductive types

Truncation is a homotopy-theoretic construction that given a space and an integer n returns an n-truncated space together with a map in an universal way. More precisely, if i is the inclusion of n-truncated spaces into spaces, then n-truncation is … Continue reading

Posted in Code, Higher Inductive Types | 15 Comments

## Running Spheres in Agda, Part I

Running Spheres in Agda, Part I Introduction Where will we end up with if we generalize circles S¹ to spheres Sⁿ? Here is the first part of my journey to a 95% working definition for arbitrary finite dimension. The 5% … Continue reading

## A Simpler Proof that π₁(S¹) is Z

Last year, Mike Shulman proved that π₁(S¹) is Z in Homotopy Type Theory. While trying to understand Mike’s proof, I came up with a simplification that shortens the proof a bunch (100 lines of Agda as compared to 380 lines … Continue reading

Posted in Applications, Higher Inductive Types, Models | 5 Comments

## Reducing all HIT’s to 1-HIT’s

For a while, Mike Shulman and I (and others) have wondered on and off whether it might be possible to represent all higher inductive types (i.e. with constructors of arbitrary dimension) using just 1-HIT’s (0- and 1-cell constructors only), somewhat … Continue reading

Posted in Higher Inductive Types | 5 Comments

## Localization as an Inductive Definition

I’ve been talking a lot about reflective subcategories (or more precisely, reflective subfibrations) in type theory lately (here and here and here), so I started to wonder about general ways to construct them inside type theory. There are some simple … Continue reading

## A formal proof that π₁(S¹)=Z

The idea of higher inductive types, as described here and here, purports (among other things) to give us objects in type theory which represent familiar homotopy types from topology. Perhaps the simplest nontrivial such type is the circle, , which … Continue reading

Posted in Code, Higher Inductive Types | 2 Comments

## Higher Inductive Types via Impredicative Polymorphism

The proof assistant Coq is based on a formal system called the “Predicative Calculus of (Co)Inductive Constructions” (pCiC). But before pCiC, there was the “Calculus of Constructions” (CoC), in which inductive types were not a basic object, but could be … Continue reading

Posted in Code, Foundations, Higher Inductive Types | 27 Comments

## Higher Inductive Types: a tour of the menagerie

(This was written in inadvertent parallel with Mike’s latest post at the Café, so there’s a little overlap — Mike’s discusses the homotopy-theoretic aspects more, this post the type-theoretic nitty-gritty.) Higher inductive types have been mentioned now in several other … Continue reading

Posted in Code, Higher Inductive Types | 7 Comments

## Running Circles Around (In) Your Proof Assistant; or, Quotients that Compute

Higher-dimensional inductive types are an idea that many people have been kicking around lately; for example, in An Interval Type Implies Function Extensionality. The basic idea is that you define a type by specifying both what it’s elements are (as … Continue reading

Posted in Code, Foundations, Higher Inductive Types | 37 Comments